
emote Sensing 62 (2007) 217–224
www.elsevier.com/locate/isprsjprs
ISPRS Journal of Photogrammetry & R
An efficient 3D R-tree spatial index method for
virtual geographic environments

Qing Zhu a,⁎, Jun Gong b, Yeting Zhang a

a State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,
129 Luoyu Road, Wuhan 430079, PR China

b The Key Lab of Poyang Lake Ecological Environment and Resource Development, Jiangxi Normal University,
99 Zhiyang Road, Nanchang 330022, PR China

Received 1 March 2006; received in revised form 5 May 2007; accepted 10 May 2007
Available online 19 June 2007
Abstract

A three-dimensional (3D) spatial index is required for real time applications of integrated organization and management in virtual
geographic environments of above ground, underground, indoor and outdoor objects. Being one of the most promising methods, the
R-tree spatial index has been paid increasing attention in 3D geospatial database management. Since the existing R-tree methods are
usually limited by their weakness of low efficiency, due to the critical overlap of sibling nodes and the uneven size of nodes, this paper
introduces the k-means clustering method and employs the 3D overlap volume, 3D coverage volume and the minimum bounding box
shape value of nodes as the integrative grouping criteria. A new spatial cluster grouping algorithm and R-tree insertion algorithm
is then proposed. Experimental analysis on comparative performance of spatial indexing shows that by the newmethod the overlap of
R-tree sibling nodes is minimized drastically and a balance in the volumes of the nodes is maintained.
© 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.
Keywords: Virtual geographic environments; 3D spatial index; R-tree; Spatial cluster grouping
1. Introduction

As the most important geographic information com-
munication tool and human-computer interface, the
virtual geographic environments (VGEs) provide the
augmentation of sensory reality, and open up new ways
for us to comprehend the complicated real world (Lin and
Zhu, 2005). For example, scientists can simulate the
noise, heat and sunlight spreading in big virtual cities;
telecommunication companies can use three-dimensional
⁎ Corresponding author. Tel.: +86 2768778322; fax: +862768778969.
E-mail addresses: zhuq66@263.net (Q. Zhu),

gongjunbox@163.com (J. Gong).

0924-2716/$ - see front matter © 2007 International Society for Photogram
All rights reserved.
doi:10.1016/j.isprsjprs.2007.05.007
(3D) data to calculate the wave propagation in urban
environments; and architects can design new buildings
and visualize the resulting scenery based on photo-
realistic models of existing buildings, etc. The emerging
3D spatial database real-time applications (interactive
visualization, spatial query and analysis) in VGEs, which
integrate the representation of the many above ground,
underground, indoor and outdoor objects, require a true
3D spatial index in order to be able to retrieve the data
efficiently. A spatial index is a structure supporting the
spatial range queries by efficiently providing the ad-
dresses of the requested features. Since the commercial
geospatial database management systems (Geo-DBMS)
mainly support a 2D spatial index, the 3D spatial
metry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V.

mailto:zhuq66@263.net
mailto:gongjunbox@163.com
http://dx.doi.org/10.1016/j.isprsjprs.2007.05.007


218 Q. Zhu et al. / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 217–224
information of objects has therefore to be stored in the 2D
Geo-DBMS with simple 3D extensions of the 2D spatial
index (Arens et al., 2005). However, a 3D spatial database
is not a simple extension from 2D to 3D space, and many
new data types and spatial relations emerge. In a massive
3D spatial database, the 3D spatial index and spatial
queries are very significant to the efficient management of
the database, as well as to its real time applications.

Although there exist many different spatial indices
such as k–d-tree and cell-tree, etc., they are not however
suited to 3D applications. Most research on 3D spatial
indices is involved in the 3D extension of Quad-Tree and
R-tree, such as Octree and 3D R-tree. The design ideas of
these 3D spatial indices are based on the strategy of
secondary storage access. That is, the spatial index is
stored out of the core memory. For data retrieving, the
index node is extracted first, and then the real spatial
objects related to the index node are accessed. One node
of the index corresponds to a disc page in the secondary
storage in order to access node information quickly. In the
classical Octree, however, one object may be stored in
multiple nodes, which results in high maintenance costs
and low space utility. Moreover, Octree is a kind of space-
driven index structure, and the scope of the database must
be planned in advance. It is not able to dynamically adjust
the tree structure according to the actual object layout. As
a result, the tree depth is high where there are many
objects, and this also results in unstable query perfor-
mance. Many more recursive operations are involved,
which makes the application difficult to optimize. Even
the Octree is considered as a simpler data structure for a
3D spatial index since it is the 3D variant of Quad-Tree
and its structure is regular (Gaede and Günther, 1998).
However, the major argument in favour of 3D spatial
index is the support for overlapping objects, which
represent geographical data more closely.

Based on the idea of B-tree, Guttman put forward R-
tree in 1984, which is height-balanced (Guttman, 1984).
R-tree is the extension of a one-dimensional data index
B-tree for multi-dimensional query and is a spatial index
of depth balance, whose root node is the same distance
from all leaf nodes. This feature means that R-tree can
maintain a stable performance and high space utilization.
For instance, as the space query accesses only part of the
index data, it is not necessary to load all index data into
the main memory. Therefore, R-tree is considered as one
of the most promising 3D spatial indices.

2. From R-tree to 3D R-tree

Theoretically speaking, 3D R-tree would inherit
the features of R-tree, and is a dynamic structure. The
scope of the database can be adjusted, while the tree
shape is autonomously optimized during the insertion
of objects. The depth of all leaf nodes is then balanced
and the query performance is stable. In other words, R-
tree possesses the feature of spatial proximity. In an
ideal case, the neighbouring objects should be in the
same nodes or sibling nodes, the minimum bounding
rectangle (MBR) of sibling nodes is different, and the
overlap is then minimized. However, when the index
expands from 2D to 3D, because of the great size and
shape diversity of different objects in 3D space, the
minimum bounding box (MBB) of sibling nodes will
frequently overlap, and the MBBs of nodes can even
contain each other. In order to adequately take into
consideration the principle of 3D spatial proximity, the
better space proximity of R-tree is therefore the key to
3D spatial indexing. 3D spatial clustering and the
corresponding 3D R-tree indices are required in order
to minimize the overlap among the sibling nodes and
to balance the shape and size of nodes. Proximal ob-
jects in 3D space cluster together in the same nodes or
proximal sibling nodes. Furthermore, its tree-shape
hierarchical structure makes it easy to transit rapidly
from the whole to the local, which can accelerate full
3D spatial queries.

Recently, more and more research has focused on
the 3D spatial index for large-scale 3D city modelling.
Kofler attempted to combine the R-tree index with LOD
(level of detail), and put forward the LOD-R-tree
method in which the level of R-tree is regarded as the
level of LOD representation (Kofler, 1998). The basic
idea of LOD-R-tree is that the depth of tree and the
MBR of each node are predefined and each spatial
object is then inserted into the corresponding node;
however, it is obviously still a 2D R-tree. Zlatanova tried
to find a similar way of uniting R-tree with LOD, and
brought forward three kinds of grouping methods to
group objects that are similar in the aspects of location
and shape, which takes the altitude factor into con-
sideration (Zlatanova, 2000). These methods maybe
useful to the above ground and outdoor city models, but
there are still difficulties with true 3D city models, such
as the consideration of both underground and indoor
objects, as well as the component models of complicated
buildings.

For dynamic indexing as well as R-tree construction,
both insertion and deletion are important basic opera-
tions. Of course, insertion is more critical to the R-tree
construction procedure in complicated 3D space. The
insertion of an object would result in the splitting of
the R-tree node, and cluster grouping is usually used
to support node splitting and node optimization. In



219Q. Zhu et al. / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 217–224
classical R-tree, if two objects are in two different nodes,
the two objects cannot be adjusted later into one node
regardless of the layout of spatial objects. The classical
R-tree follows the principle of minimum area, ignoring
other factors such as overlap. In order to realize the
cluster and reduce the overlap, R+-tree allows one object
to exist in multiple nodes, so the space cost is high
(Sellis, 1987). R⁎-tree realizes rational clusters by syn-
thetically introducing coverage, overlap and periphery
(Beckmann, 1990). However, how to combine the three
factors is unknown in 3D space. Hilbert R-tree manages
to map the high-dimensional objects to one-dimensional
space by Hilbert value, but the mapping from multi-
dimensional to one-dimensional does not work well
in all conditions, especially in 3D space (Kamel and
Faloutsos, 1994). cR-tree applies a clustering algorithm
such as k-means to realize node split, and obviously
replacing a two-way split with a multi-way split is more
reasonable (Brakatsoulas et al., 2002). With respect to
point data, original k-means is good, but it cannot work
well with spatially extended objects. Where the sil-
houette coefficient is considered as a measure to find the
clusters (introduced from the field of data mining for
point data), it does not adapt to the spatial data with
various spatial extensions. Therefore, a new measure
needs to be developed for various 3D spatial objects in
VGEs.

A new 3D R-tree algorithm based on 3D spatial
cluster grouping is proposed in Section 3. Section 4
illustrates the results of experimental analysis. Finally, a
few concluding remarks are presented in Section 5.

3. 3D R-tree algorithm based on 3D spatial cluster
grouping

Aiming at the problems of serious overlap and
unbalanced volume of nodes, this paper first proposes a
new integrative grouping criterion concerned with the
3D overlap, 3D coverage and MBB shape value of
nodes. Then the k-means algorithm is employed to im-
prove the 3D spatial cluster grouping and inserting
operation of 3D R-tree.

3.1. Integrative grouping criterion

For a 3D spatial object set S={P1, P2,…, Pn}, there
are clustered group sets Si, i=1,…, k.

The integrative grouping criterion value W can be
calculated using Eq. (1), in which the three factors have
the same influencing weight. Of course, depending on
different requirements, we can assign different weights
to these three factors. For example, when the minimum
of overlap volume is the most important factor, then its
weight could be made the largest.

W ¼
Xk�1

i¼

Xk
j¼iþ1

OverlapðSi; SjÞ

þ
Xk
i¼1

CoverageðSiÞ þ
Xk
i¼1

ShapeðSiÞ: ð1Þ

Where, the MBB range of Si is from (minxi, minyi,
minzi) to (maxxi, maxyi, maxzi), the MBB centroid of
Si is ((minxi+maxxi) / 2.0, (minyi+maxyi) / 2.0, (minzi+
maxzi) / 2.0), the MBB volume of Si is Coverage(Si)=
(maxxi−minxi)⁎ (maxyi−minyi)⁎ (maxzi−minzi), the
MBB shape value of Si is Shape(Si)= ((maxxi−minxi+
maxyi−minyi+maxzi−minzi) / 3.0)

3, the overlap vol-
ume between Si and Sj is Overlap(Si, Sj). Min(x,y) is the
minimum of x and y coordinates. Max(x,y) is the maxi-
mum of x and y coordinates.

When, A=Max(minxi, minxj), B=Max(minyi, minyj),
C=Max(minzi, minzj), D=Min(maxxi, maxxj), E=Min
(maxyi, maxyj), F=Min(maxzi, maxzj).

If A≥D or B≥E or C≥F,

OverlapðSi; SjÞ ¼ 0:0:

Otherwise,

OverlapðSi; SjÞ ¼ ðD� AÞ⁎ðE � BÞ⁎ðF � CÞ:
According to the Arithmetic–Geometric Means in-

equality (Cauchy proof):

when xN0; yN0 and zN0;

ððxþ yþ zÞ=3:0Þ3Rx� y� z:

When volumes are the same, the shape value is
smaller and the lengths of MBB edges in the three axes
are closer, which means more regular shapes and more
balanced volumes. Therefore, the smaller the W value,
the better the 3D spatial cluster grouping results.

3.2. 3D spatial cluster grouping

The 3D spatial cluster grouping operation includes
two steps: the node splitting and the optimization among
nodes. Fig. 1 illustrates a typical grouping result.

One of the reasons for serious overlaps of 3D R-tree
nodes is that only the optimization of two nodes is
considered in the existing algorithms. For example, node
splitting means that an overflowing node is divided into
two small nodes. As shown in Fig. 1, the wire frame box
denotes the node that needs to be split, and solid boxes
denote the child nodes, and in this example it is obvious



Fig. 1. Spatial cluster grouping.

220 Q. Zhu et al. / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 217–224
that splitting the child nodes into three groups is more
rational than into two groups. For this purpose, a new 3D
spatial-cluster grouping algorithm is introduced, in
which the k-means clustering method of data mining is
employed to partition k clusters in a set concerning the
3D spatial layout of objects. Because both the spatial
coverage and overlap of nodes should be minimized, as
well as the shape of MBB nodes being considered, the
above mentioned integrative grouping criterion value W
is used as the grouping criterion. Fig. 2 illustrates the
flow chart of the 3D spatial cluster grouping algorithm,
which includes spatial clustering and spatial grouping.

3.2.1. Spatial clustering
Step 1: Calculate the maximal group numbers kmax.
Ensure that n /kmax≥m,
Where, n is the number of total spatial objects,
m is the minimal number of children in a node.
Step 2: Choose different group numbers I (I=2,…, kmax)
as parameters; adopt the spatial grouping algo-
rithm given below to calculate the correspond-
ing integrative grouping criterion value W using
Eq. (1). Select the grouping strategy with the
minimum value ofWas the final grouping result.

The spatial grouping algorithm, a sub-algorithm of
the spatial clustering algorithm, is described as follows:

3.2.2. Spatial grouping
Input: 3D spatial object set S={P1, P2,…, Pn}.
Output: k small group sets with inserted objects Si,

i=1,…, k.

Step 1: According to the maximum sum distance prin-
ciple, select k objects from S as the seeds of
k group sets Si, and assign the centroid of the
object to be the centroid of the group set. First,
find two objects whose distance is the maxi-
mum, and then choose one from the rest to make
the sum of the distances between it and the
first two maximal. Repeat the loop for all k
objects. The sum of distances among k objects
is calculated as

D ¼
Xk�1

i¼1

Xk
j¼iþ1

DistðCi;CjÞ ð2Þ

where, Ci,Cj are the centroids of object i and
object j respectively, Dist(Ci, Cj) is the three-
dimensional distance between Ci and Cj.

Ci ¼ ðxi; yi; ziÞ ¼ ððminxi þmaxxiÞ=2:0;
ðminyi þmaxyiÞ=2:0;
ðminzi þmaxziÞ=2:0Þ;

Cj ¼ ðxj; yj; zjÞ ¼ ððminxj þmaxxjÞ=2:0;
ðminyj þmaxyjÞ=2:0;
ðminzj þmaxzjÞ=2:0Þ;

DistðCi;CjÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2:

q

Step 2: Based on the k-means clustering method, the
remaining objects are assigned to appropriate
sets, and the centroids of these sets are updated.
The k-means clustering method means that the
object is added into the set the centroid of which
is nearest to the centroid of the object.

Step 3: Repeat step 2, until all the objects are completely
grouped into k sets.

3.3. 3D R-tree insertion

Insertion is the key step of R-tree generation, in
which new objects are inserted into the R-tree and the
rational structure of R-tree is formed. Insertion includes
two important sub-operations: node-choice and node-
split. To insert one object into the R-tree, one starts from
the root to judge the sub-tree until the leaf node is
reached. If the new insertion of an object into the leaf
node leads to the overflow of a node, the overflowing
node therefore has to be split and divided into several
small nodes. If the split of the under-layer node leads to
overflow of its father node, the split operation of the
father node continues to the root node. During the
insertion, 3D spatial cluster grouping guarantees that the
adjacent objects in space are stored in the same or
sibling nodes.



Fig. 3. 3D R-tree insertion algorithm.

Fig. 4. Dynamic insertion process of R-tree.

Fig. 2. Flowchart of the 3D spatial cluster grouping algorithm.

221Q. Zhu et al. / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 217–224
According to the minimum distance principle of
common node-choice, the leaf node with its centroid
closest to the object's centroid is selected for the in-
sertion of the object. The insertion operation probably
leads to the change of MBB of nodes from the root to
the leaf, which is the reason why current R-tree forms
an irrational layout. In order to search for the irrational
nodes for further optimization of the tree, a new dy-
namic insertion algorithm is proposed as shown in
Fig. 3:

Step 1: Node-choice operation, to find the leaf node into
which the object is inserted.

Step 2: Insert the object; if the node overflows, carry out
the node-split operation in order to realize the
optimum grouping.

Step 3: If the insertion leads to a change of MBB of the
leaf node, set the changed leaf node to be N1 and
its father node to be F.

Step 4: Search for the sibling node N2 that has the larg-
est overlap with N1 using the 3D spatial cluster
grouping algorithm, to optimize and group the
child nodes of N1 and N2 again.
Step 5: If the original group of N1 and N2 are optimized,
end the operation; if there is any change, set F to
be N1 and the father of F to be F, repeat Step 4,
up to the root node.

As shown in Fig. 4, suppose ⑤,⑥,⑦,⑧,⑨ and ⑩
represent different objects, and the object ⑩ is the new
one to be inserted into node④. In Fig. 4, the children of
③ are not described. Because the operation leads to the
change of MBB of node ④, all the child nodes of node
④, and node ②, which has the maximum overlap with
node④, have to be optimized according to the grouping
algorithm. After the optimization, the overlap between
nodes ② and ④ is minimized. If this operation leads to
the MBB of father node ① changing, the optimization
process from the child node to its father node is repeated,
i.e. until the node MBB does not change again or up to
the root node.



Fig. 5. Comparison of 3D R-tree index methods. (a) Classical algorithm. (b) Improved algorithm.

Fig. 6. 3D R-tree generation procedure. (a) Root layer. (b) 2nd middle layer. (c) 3rd middle layer. (d) Leaf layer.

222 Q. Zhu et al. / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 217–224
The advantage of this insertion algorithm is that it
is possible to optimize all the influenced nodes during
the insertion procedure because the whole tree may be
traversed if necessary. Irrational nodes are optimized
through dynamic adjustment.
Fig. 7. 3D representation of the test data. a) Building
As illustrated in Fig. 5, the wire frame denotes the
MBB of nodes at the same layer. There is little overlap
in the result of the new algorithm ((b) compared to (a)),
and the lengths of 3D MBB along the three axes are
almost equal. This facilitates the reduction of the multi-
model. b) Tower model. c) Simulated model.



Table 1
Description of the test data

Model
type

Reference
image

Number of
components

Number of
triangles

Size of scene
(x⁎y⁎ z, m3)

Building Fig. 7-a 9282 389,668 33.6⁎24.6⁎15.8
Tower Fig. 7-b 3518 336,450 13.7⁎13.6⁎32.7
Simulated

model
Fig. 7-c 20,000 240,000 1000⁎1000⁎1000

Table 2
Query time for building model (s)

Algorithm Query type

Regional query Point
query

0.01% 0.1% 1%

Classical R-tree 0.1228 0.2197 0.6884 0.0836
R⁎-tree 0.1229 0.2252 0.6816 0.0859
Improved algorithm 0.0447 0.1029 0.4262 0.0212

Table 4
Query time for simulated model (s)

Algorithm Query type

Regional query Point
query

0.01% 0.1% 1%

Classical R-tree 1.2374 1.7471 2.8322 0.7531
R⁎-tree 0.8984 1.2846 2.2860 0.5387
Improved Algorithm 0.0349 0.0946 0.4477 0.0125

223Q. Zhu et al. / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 217–224
path query and improves the spatial query performance.
Fig. 6 illustrates an experimental result of 3D R-tree
generation.

4. Experimental analysis

In order to verify the performance of our proposed
algorithm, a test environment was established using a
desktop computer with the configuration of an Intel
Pentium 2.0GHz CPU, 512M RAM. In order to keep the
performance comparison manageable, the default R-tree
parameters were set as: M=10, m=4. In this condition,
the page size for data and directory pages is 1024 bytes.
For comparison purpose, the classical R-tree and R⁎-tree
are employed for experimental analysis. To compare
the performance of the three algorithms, three different
types of true 3Dmodels were selected as shown in Fig. 7.
The first model is a complicated building, the second
model is a tower, and the third model is simulated data;
the detailed descriptions of these three models are
listed in Table 1. The first and second models are very
Table 3
Query time for tower model (s)

Algorithm Query type

Regional query Point
query

0.01% 0.1% 1%

Classical R-tree 0.0312 0.0312 0.1826 0.0259
R⁎-tree 0.0342 0.0353 0.1847 0.0274
Improved algorithm 0.0102 0.0113 0.1205 0.0088
complicated and include many components of various
sizes and shapes. The simulated model consists of
randomly generated box models (each rectangle surface
of the box model consists of two triangles implicitly)
with different sizes from 1 to 10.

Two typical queries, i.e. the regional query and point
query, are tested. The query algorithm of the improved
R-tree is the same as that of the classical R-tree. The
area of regional query varies from 0.01%, 0.1% to 1%
relative to the volume of the whole model space. The
experimental results of regional and point queries are
listed in Tables 2 3 and 4 for the three models,
respectively.

As well as query performance, the performance of the
insertion operation is also very critical to the construc-
tion of R-tree. The test results of insertion for the three
models are presented in Table 5, which records the time
cost of the R-tree generation.

From the analysis of experimental results, our
proposed algorithm is superior to both classical R-tree
and R⁎-tree in query performance, especially with
respect to the point query and small region query.
Generally, query performance is improved by more than
a factor 2, and the point query on uniformly distributed
spatial data is improved by 50 times. Furthermore, our
proposed algorithm also improves the insertion opera-
tion performance of tree construction. This is particu-
larly due to the structure improving properties: the tree
shape is kept rational and the object is inserted into
the proper node all the times, the node split operations
therefore being greatly reduced.
Table 5
Time cost of R-tree generation (s)

Algorithm Data name

Building
model

Tower
model

Simulated
model

Classical R-tree 0.8730 0.3017 1.9618
R⁎-tree 1.4749 0.5009 3.1303
Improved algorithm 0.8272 0.2739 1.6322



224 Q. Zhu et al. / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 217–224
5. Conclusion

Because of the comprehensive consideration of
MBBs' coverage, overlap and shape of nodes, the 3D
spatial clustering algorithm carries out the grouping
of nodes in the most reasonable way with minimum
overlap and balanced volume of coverage, which
therefore distinctively improves the classical 3D R-tree
structures. This paper provides a potentially true 3D
spatial index for increasingly massive 3D spatial data-
base's fast data retrieval in real-time applications of
virtual geographic environments. Further research will
include the integration of the LOD models and the 3D
R-tree, as well as its practical applications in spatial
queries within a pyramid or cone of vision.

Acknowledgments

The work described in this paper was supported
by National Natural Science Foundation of China
(40671158 and 40620130438) and National High
Technology Research and Development Program of
China (2006AA12Z224).

References

Arens, C., Stoter, J., van Oosterom, P., 2005. Modeling 3D spatial
objects in a geo-DBMS using a 3D primitive. Journal of Computers
and Geosciences 31 (2), 165–177.
Beckmann, N., 1990. The R⁎-tree: an efficient and robust access
method for points and rectangles. Proceedings of ACM SIGMOD,
Atlantic, pp. 322–331.

Brakatsoulas, S., Pfoser, D., Theodoridis, Y., 2002. Revisiting R-tree
construction principles. Proceedings of 6th Advances in Databases
and Information Systems, Bratislava, Slovakia, pp. 149–162.

Gaede, V., Günther, O., 1998. Multidimensional access methods.
ACM Computing Surveys 30 (2), 170–231.

Guttman, A., 1984. R-trees: a dynamic index structure for spatial
searching. Proceedings of ACM SIGMOD international confer-
ence on Management of data, Boston, Massachusetts, pp. 47–57.

Kamel, I., Faloutsos, C., 1994. Hilbert R-tree: an improved R-tree
using fractals. Proceedings of 20th International Conference on
Very Large Databases, Santiago, pp. 500–509.

Kofler, M., 1998. R-trees for Visualizing and Organizing Large 3D
GIS Databases. PhD. Dissertation, Graz University of Technology,
Austria.

Lin, H., Zhu, Q., 2005. Virtual geographic environments, in: large-
scale 3D data integration: challenges and opportunities. In:
Zlatanova, Sisi, Prosperi, David (Eds.), CRC Press, pp. 211–231.

Sellis, T., 1987. The R+-tree: a dynamic index for multi-dimensional
objects. Proceedings of 13th International Conference on Very
Large Databases, Brighton, pp. 507–518.

Zlatanova, S., 2000. 3D GIS for Urban Development. PhD.
Dissertation, International Institute for Geo-Information Science
and Earth Observation, Netherlands.


	An efficient 3D R-tree spatial index method for virtual geographic environments
	Introduction
	From R-tree to 3D R-tree
	3D R-tree algorithm based on 3D spatial cluster grouping
	Integrative grouping criterion
	3D spatial cluster grouping
	Spatial clustering
	Spatial grouping

	3D R-tree insertion

	Experimental analysis
	Conclusion
	Acknowledgments
	References


